GABAA Receptor α Subunits Differentially Contribute to Diazepam Tolerance after Chronic Treatment
نویسندگان
چکیده
BACKGROUND Within the GABA(A)-receptor field, two important questions are what molecular mechanisms underlie benzodiazepine tolerance, and whether tolerance can be ascribed to certain GABA(A)-receptor subtypes. METHODS We investigated tolerance to acute anxiolytic, hypothermic and sedative effects of diazepam in mice exposed for 28-days to non-selective/selective GABA(A)-receptor positive allosteric modulators: diazepam (non-selective), bretazenil (partial non-selective), zolpidem (α(1) selective) and TPA023 (α(2/3) selective). In-vivo binding studies with [(3)H]flumazenil confirmed compounds occupied CNS GABA(A) receptors. RESULTS Chronic diazepam treatment resulted in tolerance to diazepam's acute anxiolytic, hypothermic and sedative effects. In mice treated chronically with bretazenil, tolerance to diazepam's anxiolytic and hypothermic, but not sedative, effects was seen. Chronic zolpidem treatment resulted in tolerance to diazepam's hypothermic effect, but partial anxiolytic tolerance and no sedative tolerance. Chronic TPA023 treatment did not result in tolerance to diazepam's hypothermic, anxiolytic or sedative effects. CONCLUSIONS OUR DATA INDICATE THAT: (i) GABA(A)-α(2)/α(3) subtype selective drugs might not induce tolerance; (ii) in rodents quantitative and temporal variations in tolerance development occur dependent on the endpoint assessed, consistent with clinical experience with benzodiazepines (e.g., differential tolerance to antiepileptic and anxiolytic actions); (iii) tolerance to diazepam's sedative actions needs concomitant activation of GABA(A)-α(1)/GABA(A)-α(5) receptors. Regarding mechanism, in-situ hybridization studies indicated no gross changes in expression levels of GABA(A) α(1), α(2) or α(5) subunit mRNA in hippocampus or cortex. Since selective chronic activation of either GABA(A) α(2), or α(3) receptors does not engender tolerance development, subtype-selective GABA(A) drugs might constitute a promising class of novel drugs.
منابع مشابه
Down-Regulation of Benzodiazepine Binding to a5 Subunit- Containing g-Aminobutyric AcidA Receptors in Tolerant Rat Brain Indicates Particular Involvement of the Hippocampal CA1 Region
Chronic benzodiazepine treatment can produce tolerance and changes in g-aminobutyric acid (GABA)A receptors. To study the effect of treatment on a selected population of receptors, assays were performed using [H]RY-80, which is selective for GABAA receptors with an a5 subunit. Rats were given a flurazepam treatment known to produce tolerance and down-regulation of benzodiazepine binding, or a d...
متن کاملQuantitative Analysis of GABAA Gamma Receptor Subunits in the Developing Embryonic Chick Forebrain
Objective(s) In this study we investigated the expression of GABAA receptor subunits during brain development. These receptors may change in the embryonic chick forebrain. Materials and Methodes The expression levels of four types of GABAA receptor gamma subunits (γ1, γ2, γ3 and γ4) were quantified in the embryonic chick forebrain at 32 hr, 3, 7, 14, and 20 days of incubation and day one aft...
متن کاملGABAA Receptor 5 Subunits Contribute to GABAA,slow Synaptic Inhibition in Mouse Hippocampus
Zarnowska ED, Keist R, Rudolph U, Pearce RA. GABAA receptor 5 subunits contribute to GABAA,slow synaptic inhibition in mouse hippocampus. J Neurophysiol 101: 1179–1191, 2009. First published December 10, 2008; doi:10.1152/jn.91203.2008. -Aminobutyric acid type A (GABAA) receptor 5 subunits, which are heavily expressed in the hippocampus, are potential drug targets for improving cognitive functi...
متن کاملModifications of gamma-aminobutyric acidA receptor subunit expression in rat neocortex during tolerance to diazepam.
We evaluated whether tolerance to the antagonism of bicuculine-induced seizures by diazepam is associated with changes (i) in the content of mRNAs encoding for gamma-aminobutyric acidA (GABAA) receptor subunits, (ii) in the expression density of these subunits, and (iii) in the 1,4-benzodiazepine binding site characteristics in discrete neocortical structures. We found that in diazepam-tolerant...
متن کاملTitle Gaba a Receptor Α5 Subunits Contribute to Gaba A,slow Synaptic Inhibition in Mouse Hippocampus Running Title Gaba a Receptor Α5 Subunits and Slow Synaptic Inhibition
GABAA receptor α5 subunits, which are heavily expressed in the hippocampus, are potential drug targets for improving cognitive function. They are found at synaptic and extrasynaptic sites and have been shown to mediate tonic inhibition in pyramidal neurons. We tested the hypothesis that α5 subunits also contribute to synaptic inhibition by measuring the effect of diazepam (DZ) on spontaneous an...
متن کامل